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In a variational formulation, the problems of optimization of control
processes are discussed for systems described by differential equations
with discontinuous right-hand sides. The necessary conditions of minimum
of a functional are established and then applied to solution of the prob-
lems of optimization of the states of motion of oscillating conveyors.

1. Formulation of the problem. In an open region R of the n + m
dimensional space of the coordinates x;, ..., x, and the control para-
meters u;, ..., U, and in the interval of time to <K< t<T, we have given
the system of n ordinary differential equations of the first order

g.ﬂ:=:i,—./.i(x1,...,x,., Upyooop B, 1) =20 1.1)
and the system of r finite relations

Pk = Yot (g, .o, Um, £) =0 (k=1,...,r<m (1.2)

The initial x'(to) and the final xs(T) values of the coordinates xs(t)
are connected by the relations

Q=021 (ty)s -+ Zn(te)s gy Ta (T), ..., Zn (T), T1=0 (i=t,..., p<2n+1) (1.3)
The equation

O=08(x1,..., %n, t) =0 (1.4)

determines the surface S which divides the region R (and the interval

t, < t<T) into two parts: R (t, <t <t') and RY (¢’ <t T). In the
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Equations with discontinuous right-hand sides 337

part R, for which & < 0, Equations (1.1) and (1.2) are valid with the
lower indices - assigned to the functions f and y,, while in the part
R*, for which ® > 0, the same equations hold with the upper indices +
assigned to f_ and y,.

The functions f‘+ and f_~ are continuous and have continuous deriva-
tives of the order necessary for this discussion. They may be different
and, when crossing the surface S, they may have discontinuities of the
first kind. Similar assumptions are made for the functions Vk+ and y,".

Equations (1.1) are sometimes written in the form x = fst and, there-
fore, we shall call them the equations with discontinuous right-hand
sides.

We shall formulate the following optimization problem for Equations
(1.1) and (1.2). From the functions x,(t), (s =1, ..., n), and u,(t),
(k =1, ..., m), which satisfy Equations (1.1) and (1.2) with the indices
+ or - in the regions R* and R, respectively, and the quantities 17y
t;’ and T related by Equations (1.3) and (1.4), determine these which
correspond to the minimum (or the maximum) of the functional

J=glzi(ty), .- oy Zn(ty)s Ly T2 (T), ..., 2a(T), T1 +
T

+{fE @y Tm o um D) dE (1.5)
t,

where the indices * have the meaning explained above. Here and in the
following considerations, it is assumed that the admissible arcs inter-
sect the surface (1.4).

The times t;, t.’, or T may be given in advance. Thus, the times of
the beginning or of the end of the process, or the times of the discon-
tinuities of the right-hand sides of the equations will be fixed in this
problem.

In this formulation, the problem becomes the variational problem of
Mayer and Bolza [1]. complicated by the existence of the controls “k(')'
whose derivatives do not enter into the equations of the problem, and in
an essential way by the discontinuities of the right-hand sides of the
equations of motion. The analysis of optimum setting of oscillating comn-
veyors [2], vibratory pile drivers [3]. etc., belong to this class of
problems.

Another typical property of the optimization problems of control pro-
cesses is the boundedness of the region of admissible variations of con-
trols, which has not been discussed in this formulation. 8uch problems
can be easily reduced to our formulation by the methods described in
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[4.5]..Those methods make use of the equations of the type (1.2).

The existence of limitations imposed on the controls leads to the
necessity of considering discontinuous solutions of the optimization
problem. Therefore, the functions corresponding to an extremum of the
functional J will be sought as continuous functions xs(t) with piece-
wise continuous derivatives is(t) and piece-wise continuous controls
"k( t).

In the following, the problem of minimum of the functional J will be
considered. The case of maximum may be obtained by changing the sign of
the functional.

In this paper, special attention is paid to the modifications intro-
duced to the optimization problems by the discontinuities of right-hand
sides of the equations of motion. .The existence of these discontinuities
requires special investigation in order to clarify the applicability of
the known theorems and methods of the calculus of variations.

This investigation is accomplished by the methods which are similar
to those in the book by Bliss [1]. Unfortunately, they prove to be too
complicated for their full presentation in this paper. Therefore, we
have been compelled to limit ourselves to the formulation of the theorems
and rules used here, and to a short explanation concerning their proofs.

Only two necessary conditions of minimum of the functional, which are
widely used in the optimization problems of control processes, are pre-
sented. They are the necessary condition of extremum and the necessary
condition of Weierstrass of a strong minimum. Clebsch’s condition of a
weak minimum, which can be easily obtained from the Weierstrass condi-
tion [5], and Jacobi’s necessary condition, requiring a complicated
proof, are not given in this paper as they are seldom used in the opti-
mization problems.

2. The condition of extremum of the functiomal J. It is
shown in the Appendix that one of the necessary conditions of minimum of
the functional J, i.e. the condition of extremum, is the zero value of
the first variation AI of the functional I, which is constructed accord-
ing to the formula

q T
T=¢+ 3 vid [z, (t), . .., 2a (&), 4] + SLdt (2.1)
i=1 t,

where

P
P=£+ E PP, (2.2)

=1
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n r n
L=fE+ 2 hgE— A pp = D A — H (2.3)
8=1 k=1 s=1
n r
H=H+ Hy= 2 MESEH £ D pE0E (o= —1) (2.4)
8==0 k=1
Here, Pp Vs Ks(t) and “k(t) are the undetermined multipliers of

Lagrange which should be calculated. Here and in the following, the
indices 1 are omitted in the cases which exclude any misunderstanding.
The symbols & and A denote the "variations at the point" and the "vari-
ations of the point", respectively. The difference between these two
concepts has been explained in [4]. The summation in the second term on
the right-hand side of the Expression (2.1) should be carried over all

i =1, ..., q, where g denotes the number of instants of time t = t’ for
which the right-hand sides of the equations of motion are dlscont1nuous.

To avoid confusion, we shall denote by t = t* the instants of discon-
tinuities of the controls u,(t), and by t = t’ the instants of discon-
tinuities of the right-hand sides of the equations of motion. The number
g includes the instants t = t' of discontinuities of the right-hand sides
of the equations of motion at continuous controls as well as the instants
t = t'* of the discontinuities of the right-hand sides of the equations
of motion and the discontinuities of the controls u,(t).

We shall consider first the instants of the discontinuities of the
right-hand sides of the equations of motion. For simplicity we.assume
that in the interval t, < t<X T only one point t = t' of discontinuities
of the functions f_and y, exists. Furthermore, to be specific, we
assume that in the sub-interval t, <t <t’ the representing point be-
longs to the subregion R of the region R. Using in addition the Expres-
sion (2.3), we can represent the functional (2.1) in the form

ooa T n
I=g4v0 + g (3 Aczr —H)de+ S (S e — HY)dt  (2.5)
ty, =1 t' s=1

Constructing its first variation AI, we have
AT=A0+vAY+ (fo—fo)e 88 — (fo)i, 8t + (o) 8T +
v n m
. 6 oH~
4+ M'(‘Sx;—— dugtdt +
,S,{El ( )= P e (2.6)
T

m
2 (7“3+5xs+ — %g% azc:) —_ 2 g—Ij: duy }dt

tr s=1 k=1

+

o
Ay
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In this, the following notations are introduced
o9
AP = bt + 2 oT + 2 (3, iy & % (to) + 5, (1) O % (T)) (2.7)

ad =S58+ Z Ty A5 () (2.8)
and the equations are used

. aHE aHE _
x‘i"—-_a_z.—,? (s=1,...,n) —_*ap.,,i_o k=1,...,7 (2.9

which are equivalent to Equations (1.1) and (1.2) and the relations (1.3)
and (1.4). On the right-hand side of (2.6) the symbol (f, )t’, for
example, denotes that the value of the function f, should be calculated
for the time t = t’.

Integrating by parts the first sums of the integrands in the Expres-
sion (2.6), we obtain

U n n t
M0z dt = SV A (E) 02~ (') — A (to) 824 () — \ Ae~ 02" dt
:S..gl 2{ " ° ,X (2.10)
T , T
S S Aoz, dt = Z{’" £(T) 8z, (T) — Mot (') dz,* (t)-——g Ros" 0z, dt}
1’ 8=1 s==x1 t
Using these together with the Formula (2.7), (2.8), and
AT (£) = 824 (2) + 2, (t) 8 (2.11)

where t assumes the values t’, t., T, we can transform the first vari-
ation (2.6) of the functional I to the following form

al=[ 35+ 2 bt 1) = o] dto+ [ — 3 (D) D)+ (e o +

+ {5+ e — o — DA (#)a7 () — Mt () a0 (€)1} o +

8=]1

+2 [y — M 0] amt) + 2 [Z+rnD]an@) +

+ 2 [ @) =M@ +v gy |am ) —

8=1
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S{f} A +aH)o. +Z ou.}dt—

mm]

§{ A+ Ta;}) dz,t -+ 2 wou;}dt (2.12)
& k==l

l—l

This quantity should be equal to zero. In order to satisfy this re-
quirement, it is necessary to follow the following procedure.

We select the multipliers A _(t) in such a way that they satisfy the
differential equatioms

o+ -‘?ﬁi— =0 =1 ..., n) (2.13)

The coefficients of the 2(m - r) independent variations 5u,! should
be equal to zero. The remaining 2r coefficients of the dependent var1-
ations Suht become zero through the selection of the 2r multipliers “k .

We have thus

oHt
6ukﬂ=

= () (k=1,...,m) (2.14)

The coefficients of the 2n + 2 - p independent variations of the set
8¢y, Ax (t)), 8T, Ax (T) should be equal to zero. Selecting the multi-
pliers p; in such a way that the coefficients of the remaining p vari-
ations become zeros, we obtain the equations

gT? + E A (25) z, (to) — (fo)ta =0, % — 2 A (T) 5:. MY+ {r=0 (2.15)

8=]

P _
ax'_(to)_ - Aol (tO) - 0 (8 = 11 ce ey n)) az (T) + Al' (T) O (s = 1 vy n) (2.16)

Finally, the set of variations 5t', Ax (t ) is related by one rela-
tion. Therefore, the coefficients of the n independent variations are
equal to zero, and the multiplier v can be selected such that the last
coefficient of the dependent variation becomes equal to zero. In this
way we find

AT ()= (t‘)+v;§.—‘:—ﬂ-= 0 E=1,...,n) (2.47)
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v aa_{t)" + (/o-)t’ - (fo+)t‘ - Z [As™ (t') ;”-— (t') — A" (t') -".’a+ (t')] =0 (2-18)
8=1

This system of equations replaces the usual conditions of Erdmann and
Weierstrass.

The system of Equations (2.13) to (2.18) represents the-condition of
extremum of the functional J. In order to solve the optimization problem,
this system should be supplemented by Equations (2.9), the relations
(1.3) and (1.4), and by the conditions of continuity of the coordinates

ze (V) = x5t (') (s=1,...,n) (2.19)

In this way, with the above assumptions concerning the number of the
points of discontinuity of the right-hand sides, the 4n + 2m + 2r
functions xst(t), Aq ), ukt(t), and uki(t) are determined by the 4n +
9m + 2r Equations (3.9), (2.13) and (2.14). The integration of the 4n
first-order equations (Equations (2.13) and the first group of Equations
(2.9)) introduces 4n arbitrary constants. In order to determine these
constants, together with the p + 1 multipliers p; and v, and the quanti-
ties tg, t’, and T, we use the 4n + p + 4 conditions (2.15) to (2.19),
(1.3) and (1.4).

Substituting the values of A _(t,) and A_(T) from Equations (2.16)
into Equations (2.15), we can write them in the form

dQ . 8q> 2 aq) . .

dty 0ty + El 3z, (t) z, (to) = (fo)e, (2.20)
dq) aq) < a(P . _
a=a T El Bz, (T) ™ (T)=—or (2.21)

Substituting now the derivatives x from Equations (1.1) and using the
notations (2.4), with the identity Hh = 0, we obtain the relations

0[Oty = — (H)t, 39/0T = (H)r (2.22)
Analogous transformations may be applied to the condition (2.18) re-

sulting in the relation

v % + (HY)y — (H ) =0 (2.23)

We shall consider now the discontinuities of the controls u,(t). We
assume again that only one point t = t* of discontinuity of the controls



Equations with discontinuous right-hand sides 343

exists in the interval t, {t< T. The right-hand sides of the equations
of motion will be at first assumed to be continuous. Thus, we may use all
the results obtained in [4,5] for the optimization problems of control
processes for the equations of motion with continuous right-hand sides.
Comparing them with the relations derived above, we see that Equations
(2.9), (2.13) and (2.14), and the conditions (2.15), (2.16), (2.19) and
(1.3) remain valid. Equation (1.4) should be neglected, and the Erdmann-
Weierstrass conditions assume the following form

M) — A () =0 (s=1,..., ) (H ) — (H)e =0 (2.24)

Here, the indices — and + denote that the functions belong to the
intervals t, <<t < t* and t*<Ct T, respectively.

If we assume that in the interval t, t<C T there exists only one
point t = t’'* of discontinuity of the right-hand sides of the equations
of motion and the controls u,(t), then the corresponding calculations
result in the equations and conditions which coincide with those derived
for the case of the point t = t' of discontinuity of the equations of
motion only.

The calculation of the number of functions and constants which should
Be determined, and of the number of equations and conditions obtained
from the condition of extremum is performed in the same way as it was
done This calculation shows that, in the last two cases, the number of
equations and conditions is exactly sufficient for constructing the solu-
tion satisfying the condition of extremum of the functional J.

More complicated problems, with the curve corresponding to a minimum
of the functional J having several corner points in the interval
ty<< t T, will not be considered here. Such problems do not introduce
any changes in the relations given above, but they strongly complicate
the process of derivation.

Examining Equations (2.24), (2.17) and (2.18), we arrive at the con-
clusion that the points t = t' and t = t'*, which correspond to the dis-
continuities of the right-hand sides of the equation of motion, differ
essentially from the point t = t* of the discontinuity of the controls
u,(t). In fact, for t = t* the Lagrangian multipliers A _(t) and the func-
tion H are continuous, while for t = t’ and t = ¢'* these functions may
have discontinuities [7].

It is necessary to make one more important remark. If the equation of
the surface S does not contain time t explicitly, then the function H,
according to (2.23), will be continuous, even if A, may prove to be dis-
continuous.
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If, in uddition, the functions fs and Yi do not depend on time, the
system of equations derived above has the first integral

H = H) = h = const (2.25)
and instead of the conditions (2.15) we have in this case
Op /0ty = —h, 0p /0T =h (2.26)
as implied by the relations (2.22).

3. The necessary condition of Weierstrass. Having determined
a solution satisfying the condition of extremum, it is necessary to
verify whether the functional J assumes its minimum value for this solu-
tion. Considering the discontinuities of the solution, we have to use
the condition of Weierstrass for the absolute minimum of the functional

J.

The formulation of the necessary condition of Weierstrass is given in
the Appendix. It is constructed with the use of the Weierstrass function
E which, in our problems, has the following form

E==L(21, .0y xn, Xl) .y Xﬂ, Ul,---, Um, A’ly"'p A’ﬂ! p’lr"n Pro t)—

_L(xli vo0y Ty "ili ey x;'l’ Uyy - ooy Um, A'1) sy A'ﬂv Riy o« oy Yry t) -
2 . . oL
——Z(X—:c,)%’— 3.1)
8=1

where z_ and u, are the coordinates and controls corresponding to the
minimum of the functional J, and X, and U, are arbitrary admissible
functions satisfying Equations (2.5). The function L may be discontinu-
ous, but at the point of discontinuity t = t’ it has the left and the
right limits.

The necessary condition of Weierstrass for the absolute minimum of
the functional J is formulated in the form of the inequality

E>O0 (3.2)

At the points of discontinuity of the right-hand sides of the equations
of motion, this inequality should be satisfied by both limits of the
function E at the discontinuities. Substituting L from the Expression
(2.3) into (3.1) we obtain the following relation

E=H(z1....,zn,U1.--., Um,}vl,-.., A.n, Wiy o o oy Bry t)'—"
—H (T, ooy Tny Uyye vy By Mgy v ooy Ay Bay o ooy Uiry B) (3.3)
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Considering that HL = 0, the condition (3.2) may be replaced by the in-
equality

HA (xl’ LECCE) zm Ul: LRI ] U'rm )'1’ *eny Km t) <
<H1 (:tl,..., xn, ul,..., um, }"1""! 7\',;, t) (3-4)

which, at the points t = t' and t = t'*, holds for the left and right
limits of the function H,.

This complication does not exist if the function & in Equation (1.4),
which determines the surface S of the discontinuities of the right-hand
sides of the equations of motion, does not contain time t explicitly.
Then, the function f, is continuous in the total interval t <t <CT.
The book [7] contains a statement which indicates that the solution of
the optimization problems for the equations of motion with discontinuous
right-hand sides may be constructed by the methods following from the
maximum principle of Pontriagin.

4. Example. A simple problem of the process of oscillating transport.
A material particle B rests on a rough horizontal plane A (Fig. 1). The
plane performs periodic horizontal vibrations with a given period 1b.
For certain motions of this type, the particle B moves on the plane A.
It is necessary to find the periodic motion of the plane A for which the
average velocity of the particle B during one period Tb reaches its
maximum value, i.e. it is larger than for any other motion of the plane
with the same period Tb.

We introduce the coordinate axes y and :z connected with the plane A,
as shown on Fig. 1, and we denote by £(t)
the displacement of the plane. The equation
of motion of the particle B has then the

form.
Ve y=—F—fesigny or gF=otutfg=0
(4.1)
Fig. 1 where . .
z=y, E=u (4.2)

The equation of the "surface" of discontinuity of the right-hand side
is
=2=0 (4.3)

We shall assume that u(t) is bounded in its absolute value
[u@) | <U* (4.4)

If the absolute value of the acceleration u(t) does not exceed the
value fg, i.e.

lu(9)| < fg (4.5
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then the point B moves on the plane with stops of finite duration. For
these stops, the equation holds

g, =2=0 (4.8)

In order to separate these two possible cases of motion we shall use
the following convention. If the Equation (4.1) and the inequalities
(4.4) are satisfied, we say that the particle B is in the zone of motion;
if the Equation (4.6) and the inequality (4.5) are satisfied, the
particle is in the zone of rest. We shall impose the essential require-
ment U* > fg.

We investigate a periodic motion of the point RB. Thus, the initial
and the final velocities are related by the equation

1 = z(T) — z(ty) = 0 (4.7)
In addition we have the relations
Pr=1to=0, o3 =T —To =0 (%4.8)
and
T,
0= § u(dr=0 (4.9)

0
which express the definiteness of the beginning and end of a period and
the periodicity of the function u(t).

Passing to the open regions of variability of "controls" in both
zones, we write the relations
Yt =u —5(» =0 (4.10)
PYe=u—x°%v) =0 (4.11)

The diagrams of the functions x(v) and %%(v) are shown in Fig. 2.

The optimization problem of the process of X 1w
oscillating transport may be now formulated in U =5~
the following form. -/ Elo[w

It is necessary to find such functions x(t) VRV I EE
and u(t) satisfying Equations (4.1) and (4.10) T Vs
in the zone of motion, Equations (4.6) and L1 .

(4.11) in the zone of rest, and the conditions ' 1

(4.3), (4.7) to (4.9), for which the functional 2
T,

J = S z() dt (4.12) Fig. 2.

[}

has its maximum value.
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Here, instead of the average velocity of motion of the particle during
one period V = J/T,, we consider the displacement during the same period
To. The problem is formulated for a maximum and, therefore, it is neces-
sary to change the sign of inequality in the Weierstrass condition.

The optimization problem in the formulation described above is more
complicated than those presented in previous sections. In addition to the
discontinuities of the right-hand side of the equation of motion, in this
case we have also the transition from the zone of motion to the zone of
rest, i.e. from the differential equation (4.1) to the algebraic relation
(4.6). The problems of this type can be solved by the methods described
above. The presentation of the corresponding generalizations would cause
a considerable expansion of this paper. Therefore, it will not be given
here, and only the fundamental results of that analysis, written for the
simple example being considered, will be used.

We construct the functions H and ¢, which are necessary for the solu-
tion of the problem. In the zone of motion we have [6]

= — a(t) — Mt)[u £ fg] + pu + () [u —x(2)] (4.13)
while in the zone of rest the function H is given by the formula

H° = pu + p°()[u —%°(v)] (4.14)

The function H is continuous in the whole interval t0<; t <T. Further-
more, we have

@ = p1lz(T) — 2(to)] -+ pato + ps(T — To) (4.15)

According to the relations derived in Section 2, we comnstruct the
following equations
AE =1, —MO) 4 p + 1) = 0, — p(e)y'(x) =0 (4.16)

which are valid in the zone of motion, and the equations

pAp® =0 —uy’()=0 (447)

which should be satisfied in the zone of rest. In addition fto these
equations, the multipliers A(t), Py Pgs and p; are related by the con-
ditions

AMO) = MTo) =— p1, ~p2=ps=nh (4.18)

where h is the constant from the egquation H = h, which determines the
first integral of the equations of the problem. In the zone of rest,
A(t) remains undetermined.
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The Weierstrass cendition for both zZones can be written in the form of
the inequality

ROV —ul <0 (4.19)

where u(t) denotes the function determined by the second of Equations
(4.18) or the first of Equations (4.17).

The first two Equations (4.16) show that in the zome of motionm up(t) is
a linear function of time and becomes zero only at a finite number of
points of the interval t, < ¢t < T. Therefore, X' (v) = 0 and consequently

u=4U®* or u=—U* (4.20)

except for the points t = t* where p(t®) = 0. Anslogously, we find that,
for p # 0, in the zone of rest the following equations are valid

u =4 fg,.or u=—fg (4.24)

These results simplify considerably the solution of the problem.
Nevertheless, even taking them into account we have to consider a large
number of solutions which might give the optimum process. Their construc-
tion would be an interesting illustration of the methods of analysis
given above; however, the majority of these solutions either do not
satisfy the Weierstrass condition or do not satisfy the conditions of
periodicity (4.7) or (4.9). We shall not describe here these solutionms,
but we shall only consider the solution which gives the optimum process
of oscillating transportation.

The periodic optimum solution of this simple problem of oscillating
conveyor corresponds to the periodic function u(t) whose diagram is given
in Pig. 3. For definiteness, the
. origin of time ¢t = 0 is assumed as
vp-- coinciding with the instant of dis-

continuity of the function u(t),
which varies from the value + fg to
the value — U*. This solution can be
»>- easily constructed by the use of
Equations (4.1) and (4.6) and the
conditions of periodicity (4.7) and
(4.9). It has the following form

\
\
BRI

o) =U*—fo)t O0<t< )
Fig. 3. o) = U* + o)t + 20Uy (H<t<t)
() =0 (W<<I<T) (422

where
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U* T, T
t = ——-—,T'*:-i‘-'- =, th= 5 (4.23)

We shall construct now the Lagrangean multipliers A(t), p(t) and p.
For this purpose we construct the expression
x(t)::—pl-{-t—_-?»" ©) ¢ (4.24)

satisfying the first of Equations (4.16) and the first of conditions
(4.18). The second of Equations (4.18) results in A(Tb) = p;, and deter-
mines the discontinuity of the multiplier A(t):

T
A~ (tg) == A+ (0) 4+ 5 (4.25)
At the time t = t; the equation M(t) = 0 holds, and it implies

o— A+ (0) — = '*'fg&—o (4.26)

These relations are valid in the zone of motion.

At the transition from the zZone of motion to the zone of rest, the
continuity condition of the function H gives

(@) U+ fgl=plU*—fg] (4.27)

Equations (4.23) to (4.27) determine the quantities p, h+(0) and
A" (ty). Their solution yields the following values
PO it - Y
D77 / 8
ooy oA To PN Ay 1l 1 (4.28)
( }-“‘ ng‘ 8 ! (3 = ngt [
It is now easy to determine the multiplier u(t) from Equations (4.16),
(4.17) and (4.24) in the form

U* 7
po=t— L ogign 25
B — (g8 T “
piy=—p=""pps 7 L<t<T)

The diagrams of the functions A(t) and p(¢) are shown in Fig. 3.

In the subinterval 0 <t <;t1, we have u(t) < 0 and u(t) = ~ U*,
Therefore, the Wejerstrass condition is satisfied for arbitrary admis-
sible u(t) satisfying the inequality lu|<§ U*. In the next subinterval
t) <t <ty we have u(t) >0 and u = +U*, and the Welerstrass condition
is again satisfied for all admissible controls. Finally, in the last sub-
interval t, S ¢t 7T, it is pu(t) > 0 and u = + fg. Thus, the Welerstrass
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condition is satisfied in the total interval tg< t KT

A superficial consideration of the optimization problem of the process
of oscillating transport may suggest that the optimum state of motion of
a particle on the plane exists for the periodic displacement of the plane
E(t) having the acceleration diagram shown in Fig. 4. Therefore, con-
cluding this paper we shall give the expres-
sions for the displacement of the particle B

during the period 7, taking into account the \*
optimum state of motion of the plane 4 as Lopt u
determined by previous analysis and the \
state of motion mentioned just now. These ex- | ¢
pressions have the following form
*3 ___ 2 2
Jopt:U——————U,(fg) % (4.30) —
U*—jeg , To Fig. 4.

J = ng ~4—‘ (431)
The first of them corresponds to the optimum state. For comparison,
we calculate the difference between these two displacements

To® (U*—fg)?
Jopt—‘Jz 16 (U* + fg) U*>0 for U*>fg
The results are shown in Fig. 4, which contains the diagrams of velo-
cities for both states of motion.

The author expresses his deep gratitude to A.I. Lur’e for his atten-
tion and interest to this paper, and to G.Iu. Dzhanelidze and I.I.
Blekhman for their discussions of the results.

APPENDIX
In the n + n dimensional space of the coordinates T, e, X and the
controls vy, ..., B, We shall consider a normal arc C satisfying Equa-

tions (1.1), (1.2) and the conditions (1.3), (1.4), and corresponding to
a minimum of the functional J. On this arc, the controls u(t) or the
right-hand sides of the equations of motion may have a finite number of
points of discontinuity. Such points will be called the corner points of
the arc C.

We assume that, on the arc C, the matrix

op _ |20

Ju 6up

whose k, P element is the derivative awk/a"ﬁ is of the rank r, equal to
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the number of Equations (1.2). Thus, using the arguments and calculations
differing from those in the book by Bliss [1] only by the necessity of
construction of the functions “k(bl' v bP, t) satisfying Equations
(1.2), we can prove the following lemma.

If an admissible arc C satisfies Equations (1.1) and ¢1.2), and if p
admissible sets of the constants and functionms

Tow» T TTar Ssa () Lo (A.9)

are related by the variational equations on C

. o of o af e
Boa — a—xi'gva"'z—a;;_geu':o’ 2

y==1 B=1 Be=1

Cﬁa =0 (A.2)

where the derivatives 3fs/3xy, afs/auﬁ, Bwk/BﬁB are taken on C, then
there exists the p parametric family

xs(bl,...,bp, t) (s=1,...,n),

Up(®ro -0 by t) (k=1 ..., m),

to (bt b) SEST (b, .. s By) (A.3)
.y pY

containing C for b1 = ... =b_ =0 and consisting of the curves satisfy-
ing Equatioms (1.1) and (1.2). This family has the property that for any
a« =1, ..., p the quantities (A.1) are equal to its variations with re-
spect to bOt on C:

. (ato) . _(3:’) . _<6T)
=\, ) TreT %) TeT\%% ),

’axs) <6uk)
gsa =(_¢9—b:,0’ ;ka:' —55: 0 (A.4)
where the index 0 denmotes that the derivatives are calculated for b1 =
.= b =0,
14

Let us assume that we have constructed a p + ¢ + 1 parametric family
of the curves (A.3). Substituting the functioms (A.3) into the functional
J we have

J=J By, ... bp+q+1) (A.5)
The total differential of this function is

q
dJ = o8t |, + D) [fo™ (8) — fo* )] 8t + dg +

i=1

T = m
+S [2 (%’}‘ 8z, + —g.iai, ) + kZ gﬁ‘; au,,] dt (A.6)
8 =1

t, &=1
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where

e+l e+l p+g+1

_ at, . ot/
8= 3 ab° db,, 8= O o B T = 3
a=} a==] a=1 @ (A.7)

p+qt1 az P+a+1 ou
oz, = - db dup= D 6bk db,

a==1 a==1

For the curve C this differential assumes the form

P+q+1
dJ = 2 J1(Bgr Lo Tp) dby (A.8)

a=1

where

q
Tt Bar b Ta) = Ty = fo%q I, + D) (o™~ fo)y %y + Gy +

+{[2 ]

f, =1

( dfo ea + 5 §,¢) + 2 Py ;,m] dt (A.9)

and Gla is the linear form
Gla = Gl lgld (to), .- Em (to), oa’ gla (T)' LI gna (T)’ TTa] =

- RN £ +2 [az A R I ) Y

The function Jla is called [1] the first variation of the functional
J with respect to bu'

We introduce now into discussion the sum
n r
Lz, 2 uh ) =fot+ D heg— D) Wby (A.11)
8=] 1

where 7\'( t) and u,(t) are the Lagrange multipliers which should be de-
termined. We also note that, if Ew(t) and glux(‘) satisfy the variational
equations (A.2), we can write

q
Tia = I [, + D) (o= — fo*)yy e + Gro +
T =n -
+{[2

Lo ("%Ii. Soa + 50 ) '*'2 Duy Cm] (A12)

Substituting the functiens (A.3) into the left-hand sides of Equations
(1.3) and (1.4), we obtain the functions ‘Pl(bl' cees bp+q+1) and
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0i(bl. cees bp.+q_+1) such that the equations

Jy, ... bp+q+1)="(0"'-'°)+"' ¢t bp+q+1)=0 (I=1....p (A13)
Qo (t)), .2y () 81 =01 . by 0y ))=0 i=1...,9 '

have the solution b1 = ... = bp*-qi-l = u = 0 corresponding to the arc C.

The functional determinant

aTfoby| T2 (Egr Lar To)

...............

3,/0b, | = | ©; (Bas La» T (A.14)

..............

aoi/ aba oi (Ea' Ca' a)

where 01 and ei denotes the variations of the terminal conditions (1.3)
and of the Equation (1.4)

1 =0 (s B o) = b Tyt rT¢+2 [—Te.a(oua b1
(A15)

oia‘el (Ea’ ;a’ a) —(‘fg) ’ t{a+2 (0:: 0) ) gga (ti')

must be equal to zero on C for arbitrary variations. In the opposite
case, Equations (A.13) have the solutions ba = qu(u) which become equal
to zero for u = 0. Consequently, J(u) < J(0) for u< 0, and J(0) is not
a minimum.

Therefore, the rank of the matrix of the determinant (A.14) does not
exceed p + g, and the system of linear equations

r q
Jiat D) P@p + ) ¥0ie =0 (@=1,...,p+g+1) (A.16)
l==1 i=1

has non-trivial solutions p; and v,. With these p; and v, the equation

P q
JiG 5D+ ) o LT+ ) w8 (B 1) =0 (A7)
l=1 i=1
should be satisfied for arbitrary admissible variations Tgr Ty % T
E,(t), L. '

Substituting now J1(§, {, T) from (A.12) irto Equations (A.17) we ob-
tain the relation
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q P q
Jo¥lty + 20 (o~ = fo )yt + Got D) p @+ ) w8, +

i=1 =1 i=1
T n
oL 3L ¢ mo oL
+§[2 (5;:§,+3;“§s>+2 ng]dt (A.18)
o 6=1 8 k=1

which in the Lagrangean notations assumes the form

P q T
Ale+Y pot Y v @), o)+ Lal=0  @wie
=1 i=1 ty
or
AL =0 (A.20)
where
a T
TS+ 3 v lm )2y (), 41+ Lt (4.21)
i=] s
r
e=g+ ) ¥ (A.22)

I=1

The condition (A.20) should be satisfied for an arbitrary admissible
arc C which satisfies Equations (1.1) and (1.2) and the conditions (1.3)
and (1.4) and which corresponds to the minimum of the functional J. This
condition may be called the condition of extremum of the functional J.
It has been used in Section 2, where its expanded form was given.

The arguments and calculations leading to the necessary condition of
Weierstrass for a strong minimum of the functional J, in the case of the
problems with continuous right-hand sides of the equatioms of motion,
are described in full details in the Appendix of [5]. They will not be
repeated here; only the special aspects introduced by the discontinuities
of the right-hand sides will be indicated.

At an arbitrary point of the arc C, not coinciding with the corners
of C, the inequality should be satisfied

E>O0 (A. 23)
where
. Y & . .. 9L
E=L(X U, hpt)—L@zulpt)— (,Xs—xa)ax-s (A. 24)

8==1

while T, U correspond to the arc C, and Xs, Uk are arbitrary admissible
functions satisfying Equations (1.1) and (1.2). The function E may have
discontinuities at the points ¢ = t’, where the right-hand sides of the
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equations of motion are discontinuous. However, it has the left and right
1imits at these points. Therefore, at the points of discontinuities of the
right-hand sides of the equations of motion, the inegquality (A.23) should
be satisfied for both, the left and the right limits of the function E.
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