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In a variational formulation, the problems of optimization of control 
processes are discussed for systems described by differential equations 
with discontinuous right-hand sides. The necessary conditions of minimum 
of a functional are established and then applied to solution of the prob- 
lem of optlmlsation of the states of motion of oacillatlne convejors. 

1. Formulation of the problem. In an open region R of the n + m 
dimensional space of the coordinates x1, . . . . rn and the control para- 

meters uL, . . ., us, and in the interval of time tg < t<T, we have given 
the system of n ordinary differential equations of the first order 

g+&-j,*(5l,.. ., 3&:,, Ul,...) rim, t) = 0 (W 

and the system of r finite relations 

l)J$ = l#,kf (Ul,. . . , urn, t) = 0 (k=i,. . . , r<m) (1.2) 

‘Ihe initial x8( t,) and the final xs(T) values of the coordinates x,(t) 
are connected by the relations 

q=q+ [z,@,), . . . , I, c,, z,(T), . . . , h(T), Tl= 0 (z---i ,..., ~<2n+l) (2.3) 

lhe equation 

t+=fqq,...,zn,t)=O (1.4) 

determines the surface S which divides the region R (and the interval 
t0 < t < T) into two parts: R(t, <t <t’) and R+(t’< t\<T). In the 
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part R-, for which 6< 0, Equations (1.1) and (1.2) are valid with the 
lower indices - assigned to the functions f 
I?+, for which 6 > 0, the same equations ho1 d 

and ylk, while in the part 
with the upper indices + 

assigned to f, and vk. 

The functions f,+ and f,- are continuous and have continuous deriva- 
tives of the order necessary for this discussion. They may be different 
and, when crossing the surface S, they may have discontinuities of the 
first kind. Similar assumptions are made for the functions q~k’ and vk-. 

Equations (1.1) are sometimes written in the form jto = f,* and, there- 
fore, we shall call them the equations with discontinuous right-hand 
sides. 

We shall formulate the following optimization problem for Equations 
(1.1) and (1.2). Fran the functions x,(t), (s = 1, . . . . n), and uk(t), 
(k = 1, .,., n), which satisfy Equations (1.1) and (1.2) with the indices 
+ or - in the regions R’ and R-, 
ti’ 

respectively, and the quantities tc, 
and T related by Equations (1.3) and (1.41, determine these which 

correspond to the minimum (or the maximum) of the functional 

J = g is1 (to), l . . , zn (to), t,, 31(T), . . . , a;, (0, Tl + 

+ ito* (h . . - , %a, Ul, . - * , Urn, t) dt (I.3 
t. 

where the indices f have the meaning explained above. Here and in the 
following considerations, it is assumed that the admissible arcs inter- 
sect the surface (1.4). 

lhe times tQ, ti’, or T may be given in advance. Thus, the times of 
the beginning or of the end of the process, or the times of the discon- 
tinuities of the right-hand sides of the equations will be fixed in this 
problem. 

In this forualation, the probieu becomes the variational problem of 

Mayer and Bolza cl], complicated by the existence of the controls uL( t), 
whose derivatives do not enter into the equations of the prob.lem, and in 

8n essential waj by the discontinuities of the right-hand sides of the 

equations of motion. The analysis of optimum setting of oscillatine con- 

veyors 121, vibratory pile drivers hl, etc., belong to this class of 

problems. 

Another typical property of the optimization problems of control pro- 

cesses is the boundedness of the region of admissible variations of con- 

trols, which has not been discussed in this formulation. Buch problems 

can be easily reduced to our formulation by the methods described in 
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c4.51. .Those methods make use of the equations of the type (1.2). 

The existence of limitations imposed on the controls leads to the 
necessity of considering discontinuous solutions of the optimization 
problem. Therefore, the functions corresponding to an ertremum of the 
functional J will be sought as continuous functions x,(t) with piece- 
wise continuous derivatives i,(t) and piece-wise continuous controls 

In the following, the problem of minimum of the functional J will be 

considered. The case of maximum nay be obtained by changing the sign of 
the functional. 

In this paper, special attention is paid to the modifications intro- 
duced to the optimization problems by the discontinuities of right-hand 
sides of the equations of motion. -The existence of these discontinuities 
requires special investigation in order to clarify the applicability of 
the known theorems and methods of the calculus of variations. 

This investigation is accomplished by the methods which are similar 
to those in the book by Bliss [l]. Unfortunately, they prove to be too 
complicated for their full presentation in this paper. Therefore, we 
have been compelled to limit ourselves to the formulation of the theorems 
and rules used here, and to a short explanation concerning their proofs. 

Only two necessary conditions of minimum of the functional, which are 
widely used in the optimization problems of control processes, are pre- 
sented. They are the necessary condition of extremum and the necessary 
condition of Weierstrass of a strong minimum. Clebsch’s condition of a 

weak minimum, which can be easily obtained from the Weierstrass condi- 
tion [5]. and Jacobi’s necessary condition, requiring a complicated 
proof, are not given in this paper as they are seldom used in the opti- 

mization problems. 

2. The condition of extremum of the functional J. It is 

shown in the Appendix that one of the necessary conditions of minimum of 

the functional J, i.e. the condition of extremum, is the zero value of 

the first variation bT of the functional I, which is constructed accord- 

ing to the formula 

I = cp + 5 Vi43 [s, (to, . . . , c?&((tc’), t*‘] + fLYzt (2.4) 

i=l 1, 

where 
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L = to* + 5 b&f - i CL&f - - $ h&-H 
a=1 k=l r=1 

H = HA + H, = i &*r.f + fs* 5 pk*qk* (h, = - 1) 
e=o k=l 

(2.3) 

(2.4) 

Here, ~1, vi, AS(t) and uk(t) are the undetermined multipliers of 
Lagrange which should be calculated. Here and in the following, the 
indices f are omitted in the cases which exclude any misunderstanding. 
‘Ihe symbols 6 and A denote the “variations at the point” and the “vari- 
ations of the point”, respectively. ‘Ihe difference between these two 
concepts has been explained in [41. The sumnation in the second term on 
the right-hand side of the Gpression (2.1) should be carried over all 
i= 1, . ..) q, where q denotes the number of instants of time t = t’ for 
which the right-hand sides of the equations of motion are discontinuous. 

To avoid confusion, we shall denote by t = t* the instants of discon- 
tinuities of the controls uk( t), and by t = t’ the instants of discon- 
tinuities of the right-hand sides of the equations of motion. The number 
q includes the instants t = t’ of discontinuities of the right-hand sides 
of the equations of motion at continuous controls as well as the instants 
t =t ‘* of the discontinuities of the right-hand sides of the equations 
of motion and the discontinuities of the controls u,(t). 

We shall consider first the instants of the discontinuities of the 
right-hand sides of the equations of motion. For simplicity we assume 
that in the interval t,<t\<T only one point t = t’ of discontinuities 
of the functions f, and vyh exists. Furthermore, to be specific, we 
assume that in the sub-interval to <t<t’ the representing point be- 
longs to the subregion R- of the region R. Using in addition the kpres- 
sion (2.3), we can represent the functional (2.1) in the form 

,=,+vtt+i(;l A,-&- - H-) dt + I($ hg+&+- H+) & (2.5) 
t, s=1 t' 8x1 

Constructing its first variation AI, we have 

A 1 = A Cp + Y A 6 + (f, - fo+)t# at’ - (fo)t. ht, + (fo)T 6~’ + 

(2.6) 

+ \ { 5 ( h,+8k+ - z+ 8d) - i aF+ hk+} dt 
f’ 8x1 k=l 
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In this, the following notations are introduced 

n 

and the equations are used 

;,* = 2E- a& 

aA** 
(SC1 , . * - I 49 - = 0 

aI+* 
(k= 1,. . . , r) (2JJ) 

which are equivalent to Equations (1.1) and (1.2) and the relations (1.3) 

and (1.4). On the right-hand side of (2.6) the symbol (f,,-)t’, for 

example, denotes that the value of the function fo- should be calculated 

for the time t = t’. 

Integrating by parts the first sums of the integrands in the Ecpres- 

sion (2.6), we obtain 

1’ n sx ha-a&- dt 
1. a=1 

= $J {A,- (t’) axB- (t’) - h,- (to) axa- (to) - i &-axe- dt} 
1-l t* (2.10) 

Tn 

12 
A,+ajc,+ dt = 

1'r=1 

5 {Aa+ (T) a$*+ (T) - A,+ (t’) af+ (t’) - i&+az*+ dt} 
8=-l t' 

Using these together with the Formula (2.7), (2.8), and 

A % (t) = ax. (t) + & 0) at (2.11) 

where t assumes the values t’, to, T, we can transform the first vari- 

ation (2.6) of the functional I to the following form 

+(Vg + (f0-Jr - (jo+)r - i [A,- (t’) &- (t’) - h,+ (t’) &+ (q} at’ + 
I=1 

+‘~~[~-~~(‘.)]Az.(ta) +~j[~+;r.(T)]az.(T) + 

+ jl [h- (t’) - Aa+ (t’) + v & ] A 2, (t’) - , 
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1’ n 
- SPI 

1. s-1 

i&-++$)a%,-+ ; g+-}.- 
k-l 

Tn 

- \{x (&++s)b*+ f$ $uk+}d (2.12) 
v r-1 k=+=l 

This quantity should be equal to zero. In order to satisfy this re- 
quirement, it is necessary to follow the following procedure. 

We select the multipliers h*(t) in such a way that they satisfy the 
differential equations 

i,**+ $g = 0 (s=i,...,n) 
‘ 

(2.13) 

‘lhe coefficients of the 2(m - r) independent variations 6uk* should 
be equal to zero. The remaining 2r coefficients of the dependent vari- 
ations 6ukf become zero through the selection of the 2r multipliers pk’. 

We have thus 

a* 
a,,lt=O (k=i,...,m) (2.14) 

‘lhe coefficienta of the 2n + 2 - p independent variations of the set 

gt,, hr,(t,), ET, Ax,(T) should be equal to zero. Selecting the multi- 
pliers pz in such a way that the coefficients of the remaining p vari- 
ations become zeros, we obtain the equations 

;+ + i 5, (t,,) & (t,,) - (f&t, = 0, s - i: h,(T) i,(T) + (&)T = 0 (2:iS) 
O-1 8=1 

aq - - h,(Q = 0 ax, (to) 
(s = 1, . . . I n), &+h.(T)=O (s=i )..., n) (2.16) 

. 

Finally, the set of variations gt’, AzS(t’) is related by one rela- 
tion. ‘Iherefore, the coefficients of the n independent variations are 
equal to zero, and the multiplier v can be selected such that the last 
coefficient of the dependent variation becanes equal to zero. In this 
way we find 

A,-(t’)-L+(t~)+v&y=O (a=i,...,n) (2.17) 
. 
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v a$- + (f(Jr - (fo+)r - ajl [h;(f)&-(f) - h,+(t')&+(t')j = 0 (2.18) 

'Ihis system of equations replaces the usual conditions of Erdmann and 

Weierstrass. 

'Ibe system of Equations (2.13) to (2.18) represents the.condition of 

extremum of the functional J. In order to solve the optimization problem, 

this system should be supplemented by Equations (2.9), the relations 

(1.3) and (1.4), and by the conditions of continuity of the coordinates 

za-(t') = Z#+ (t') (s = 1, . . . . n) (2.19) 

In this way, with the above assumptions concerning the number of the 

points of discontinuity of the right-hand sides, the 4n + 2m + 2r 

functions z**(t), A *(t), u,*(t), 

( 6.9), 

and uk*(t) are determined by the 4n + 

2m + 2r Equations (2.13) and (2.14). The integration of the 4r1 

first-order equations (Equations (2.13) and the first group of Fquations 

(2.9)) introduces 4n arbitrary constants. In order to determine these 

constants, together with the p + 1 multipliers pI and v, and the quanti- 

ties tO, t', and T, we use the 4n f p + 4 conditions (2.15) to (2.19), 

(1.3) and (1.4). 

Substituting the values of As(t,) and A,(T) from bations (2.16) 

into Equations (2.15), we can write them in the form 

(2.20) 

(2.21) 

Substituting now the derivatives n from Equations (1.1) and using the 

notations (2.4), with the identity H,, E 0, we obtain the relations 

acp/%l = - (%, &@T = (ff)T (2.22) 

Analogous transformations may be applied to the condition (2.18) re- 

sulting in the relation 

v 2 + (H+)t* - (H’)t. = 0 (2.23) 

We shall consider now the discontinuities of the controls uk(t). We 

assume again that only one point t = t* of discontinuity of the controls 



Equations rith dircontinuour right-hand rides 343 

exists in the interval i,<t< T. The right-hand sides of the equations 
of motion will be at first assumed to be continuous. 'Ihus, we may use all 
the results obtained in [4,51 for the optimization problems of control 
processes for the equations of motion with continuous right-hand sides. 
Comparing them with the relations derived above, we see that Equations 
(2.9), (2.13) and (2.14), and the conditions (2.X), (2.16), (2.19) and 
(1.3) remain valid. Equation (1.4) should be neglected, and the Erdmann- 
Weierstrass conditions assume the following form 

Aa-( h?(t*) = 0 (9 = 1,. .., n), (l!Q - (H+)t. = 0 (2.24) 

Here, the indices - and + denote that the functions belong to the 
intervals to< t<t+ and t*-$t<T, respectively. 

If we assume that in the interval to <t< T there exists only one 
point t = t’* of discontinuity of the right-hand sides of the equations 
of motion and the controls uk(t), then the corresponding calculations 
result in the equations and conditions which coincide with those derived 
for the case of the point t = t' of discontinuity of the equations of 
motion only. 

'lhe calculation of the number of functions and constants which should 
?!e determined, and of the number of equations and conditions obtained 
from the condition of extremum is performed in the same way as it was 
done 'Ihis calculation shows that, in the last two cases, the number of 
equations and conditions is exactly sufficient for constructing the solu- 
tion satisfying the condition of extremum of the functional J. 

More complicated problems, with the curve corresponding to a minimum 
of the functional J having several corner points in the interval 
to< t<T, will not be considered here. Such problems do not introduce 
any changes in the relations given above, but they strongly complicate 
the process of derivation. 

Examining Equations (2.24), (2.17) and (2.18), we arrive at the con- 
clusion that the points t = t’ and t = t’*, which correspond to the dis- 
continuities of the right-hand sides of the equation of motion, differ 
essentially frcei the point t = t* of the discontinuity of the controls 
uh(t). In fact, for t = t* the Lagrangian multipliers AS(t) and the func- 
tion H are continuous, while for t = t' and t = t’* these functions may 
have discontinuities [71. 

It is necessary to make one more important remark. If the equation of 
the surface S does not contain time t explicitly, then the function H, 
according to (2.23), will be continuous, even if As may prove to be dis- 
continuous. 
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If, in addition, the functions f, and y& do not depend on time, the 
system of equations derived above has the first integral 

H = HA = h = const (2.25) 

and instead of the conditions (2.15) we have in this case 

acp/&,, = -h, 

as implied by the relations (2.22). 

i%p/ci’T =h (2.26) 

3. Ihe necessary condition of Weierotrass. Having determined 
a solution satisfying the condition of extremum, it is necessary to 
verify whether the functional J assumes its minimum value for this solu- 
tion. Considering the discontinuities of the solution, we have to use 
the condition of Weierstrass for the absolute minimum of the functional 

J. 

?he formulation of the necessary condition of Weierstrass is given in 
the Appendix. It is constructed with the use of the Weierstrass function 
E which, in our problems, has the following form 

E = L(% . . . . 2u, 21, . . ., L Ul, . . . . ufn, hl, * l *, hn, ccl, * * ,, pr, q - 

- L (21, . . *, zn, i1, . . ., in, Ul, * . ., ufn, hl, . . *, A,, 111, * . ., pr, t) - 

(3-l) 

where x8 and u& are the coordinates and controls corresponding to the 
minimum of the functional J, and x and u& are arbitrary admissible 
functions satisfying Equations (2.4). ‘lhe function L may be discontinu- 
ous, but at the point of discontinuity t = t’ it has the left and the 
right limits. 

Ihe necessary 

the functional J 
condition of Weierstrass for the absolute minimum of 
is formulated in the form of the inequality 

E>O (3.2) 

At the points of discontinuity of the right-hand sides of the equations 
of motion, this inequality should be satisfied by both limits of the 
function E at the discontinuities. Substituting L from the Expression 
(2.3) into (3.1) we obtain the following relation 

E = H (zl. . . ., zn, U,. . . . , Urn, Al, . . ., A,, pl, . . ., p,., t) - 

--Hh, . . ., G, ~1,. . et urn, L . . ., L, PI,. . ., prt t) (3.3) 
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Considering that Hcl f 0, the condition (3.2) may he replaced 
equality 

by the in- 

(3.4) 

which, at the points t = t ’ and t = t ‘*, holds for the left and right 
limits of the function If A* 

This complication does not exist if the function 6 in Equation (1.-S), 
which determines the surface S of the discontinuities of the right-hand 
sides of the equations of motion, does not contain time t explicitly. 
lhen, the function Rh is continuous in the total interval t0 <t Q T. 
Tne book [71 contains a statement which indicates that the solution of 
the optimization problems for the equations of motion with discontinuous 
right-hand sides may he constructed by the methods following from the 
maximum principle of Pontriagin. 

4. Example. A simle problem of the process of oscillating transport. 

A material particle B rests on a rough horizontal plane A (Pig. 1). The 
plane performs periodic horizontal vibrations with a given period T,,. 
For certain motions of this type. the particle B moves on the pdane A. 
It is necessary to find the periodic motion of the plane A for which the 
average velocity of the particle B during one period TO reaches its 
maximum value, i.e. it is larger than for any other motion of the plane 
with the same period TO. 

We introduce the coordinate axes y and z connected with the plane A, 
as shown on Fig. 

Fig. 1. 
. 

2= Y* f;ZU (4.2) 

The equation of the wsurface” of discontinuity of the right-hand side 

1. and we denote by t(t) 
of the plane. The equation 
particle B has then the 

or grf = ;+ u * fg = 0 
(4.1) 

iS 

6=x=0 

We shall assume that u(t) Is bounded in its absolute value 

lu(t)lbU* 

If the absolute value of the acceleration u(t) does not exceed 
value fg. i.e. 

I u(t) I G IS 

(4.3) 

(4.4) 

the 

(4.5) 



346 V.A. Troitskii 

then the point B moves on the plane with stops of finite duration. For 

these stops, the equation holds 

g;=r=o (4.6) 

In order to separate these two possible cases of motion we shall use 

the following convention. If the Equation (4.1) and the inequalities 

(4.4) are satisfied; we say that the particle 3 is in the zone of motion; 

if the Equation (4.6) and the inequality (4.5) are satisfied, tbe 

particle is in the zone of rest. ‘INe shall impose the essential require- 

ment U* > fg. 

We investigate a periodic motion of the point R. Thus, tile initial 

and the final velocities are related by the equation 

qJ1 = x(T) - z(t0) = 0 

In addition we have the relations 

opt = to = 0, (~3 = T - To = 0 

and 

(4.7) 

(4.8), 

‘p4 = ‘s’ u(t)dt = 0 
0 

(4.9) 

which express the definiteness of the beginning and end of a period and 

the periodicity of the function n(t). 

Passing to the open regions of variability of “controls” in both 

zones, we write the relations 

$* = u --x(v) = 0 (4.10) 

9,” = u -x”(U) = 0 (4.11) 

The diagrams of the functions X(U) and );O(V) are shown in Fig. 2. 

The optimization problem of the process of 

oscillating transport may be now formulated in 

the following form. 

It is necessary to find such functions x( t) 
and u(t) satisfying Equations (4.1) and (4.10) 

in the zone of motion, Equations (4.6) and 

(4.11) in the zone of rest, and the conditions 

(4.3), (4.7) to (4.9), for which the functional 

T. 

J = 5 x(t) dt (4.12) 
0 

has its maximum value. 

Fig. 2. 
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Here, instead of the average velocity of motion of the particle during 
one period V = J/To, we consider the displacement during the same period 
T,. The problem is formulated for a maximum and, therefore, it is neces- 
sary to change the sign of inequality in the Weierstrass condition. 

The optimization problem in the formulation described above is more 
complicated than those presented in previous sections. In addition to the 
discontinuities of the right-hand side of the equation of motion, in this 
case we have also the transition from the zone of motion to the zone of 
rest, i.e. from the differential equation (4.1) to the algebraic relation 
(4.6). The problems of this type can be solved by the methods described 
above. The presentation of the corresponding generalizations would cause 
a considerable expansion of this paper. Therefore, it will not be given 
here, and only the fundamental results of that analysis, written for the 
simple example being considered, will be used. 

We construct the functions H and 9, which are necessary for the solu- 
tion of the problem. In the zone of motion we have [S] 

H= - z(t) - YOIu f lgl + Pa + p(t) [u -_x(v)] (4.13) 

while in the zone of rest the function H is given by the formula 

Ho = pu + p”(t)[u - x0(41 (4.14) 

The function H is continuous in the whole interval to< t (7’. Further- 
more, we have 

(p = PINT) - 2(lo)l + pdo + Pa(T - To) (4.15) 

According to the relations derived in Section 2, we construct the 
following equations 

$k = 1, --h(t) + P + IL(t) = 09 - p(t)x’(w) = 6 

which are valid in the zone of motion, and the equations 

(4.17) 

which should be satisfied in the zone of rest. In addition to these 
equations, the multipliers h(t), pl, pz, and p3 are related by the con- 
ditions 

W) = UTO) =- p1, -pa = ps = h (4.18) 

where h is the constant from the equation H = h, which determines the 
first integral of the equations of the problem. In the zone of rest, 
h(t) remains undetermined. 
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The Ueierstrass cadition for both zones can be written in the form of 
the inequality 

p(t)W - ul6; 0 (4.19) 

wherw p(t) denotes the function determined br the second of Equations 
(4.18) or the first of Equations (4.17). 

The first two Equations (4.16) show that in the zone of motion p(t) is 
a linear function of time and becomes zero only at a finite number of 
points of the interval to < t < 7’. Therefore, x’(u) = 0 and consequently 

u=+u+ or u =- U* (4.20) 

except for the points t = t*, where I.&( t*) = 0. Anslogousl~, we find that, 

for p # 0, In the zone of rest the following equations are valid 

u=+fg,.or u=-fg (4.21) 

These results simplify considerably the solution of the problem. 
mvertheless, even taking them into account we have to consider a large 
number of solutions which might give the optimum process. Their construc- 
tion would he an interesting illustration of the methods of analysis 
given above; however, the majority of these solutions either do not 
satisfy the Weierstrass condition or do not satisfy the conditions of 
perioelicity (4.7) or (4.9). We shall not describe here these solutions, 
but we shall only consider the solution which gives the optimum process 
of oscillating transportation. 

The periodic optimum solution of this simple problem of oscillating 
conveyor corresponds to the periodic function u(t) whose diagram is given 

in Fig. 3. For definiteness, the 
origin of time t = 0 is assumed as 

coinciding with the instant of dis- 
continuity of the function u(t), 
which varies from the value + fg to 

the value - (I*. This solution can be 
easily constructed by the use of 
Equations (4,l) and (4.6) and the 
conditions of perlodicity (4.7) and 
(4.9). It has the following form 

z(t) = (P - fs)t (0 d t < Cl) 

x(t) = (u* + fg)t + 2u*t, (Cl < t < td 

z(t) = 0 (tr < t < T) (4.22) 

where 
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We shall construct now the Lagrangean multipliers h(t), cl(t) and p. 

For this purpose we construct the expression 

h (t) = -ppi+t=X+(O)+t (4.24) 

satisfying the first of Equations (4.16) and the first of conditions 
(4.18). The swond of Equations (4.18) results in h(To) = pl, and deter- 
mines the discontinuity of the multiplier h(t): 

A- @a) =: A+ (0) + f (4.25) 

At the time t = tl the equation p(tl) = 0 holds, and it implies 

u++fg To 
p-h+(o) -u* T’O (4.26) 

These relations are valid in the zoae of motion. 

At the transition from the zone of motion to the zone of rest, the 
continuity condition of the function H gives 

h-(t3[U*+fgl=PfU*-fgl (4.27) 

Equations (4.25) to (4.27) determine the quantities p, k(0) and 
A*( tz). Their solution yields the following values 

U*’ - (fgf’ To 
P=- fgU’ 8 

(4.2@ 
A.+ (0) = - 

tu* + f&P To P* - fg)” To 
fgW 8’ h- (Lpf = - fgu* 8 

It is now easy to deter&&e the multiplier !A( t) from Equations (4.16), 
(4.17) and (4.24) In the form 

fL (t) = - p = 
u** - (fg)’ To 

fgU* 8 

(0 6 t d h) 
(6.29) 

The diagrams of the functions h( tf and p(t) are shown in Fig. 3. 

In the subinterval 0 Q t < tl, we have c\(t) < 0 and u(t) = - If’. 
Therefore, the Weierstrass condition is satisfied for arbitrary admis- 
sible u( t) satisfying the inequality 1~1 d II*. In the next subinterval 

t1 6 t Q tg. we have p( t) > 0 and a = +U*, and the Weierstrass condition 
is again satisfied for all admissible controls. Finally, in the last sub- 
interval t2 < t < T, it is p(t) > 0 and u = + fg. Thus, the Weierstrass 
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condition is satisfied in the total interval t0 < t < T. 

A superficial consideration of the optimization problem of the process 

of oscillating transport may suggest that the optimum state of motion of 

a particle on the plane exists for the periodic displacement of the plane 

c(t) having the acceleration diagram shown in Fig. 4. Therefore, con- 

cluding this paper we shall give the expres- 

sions for the displacement of the particle B 

during the period TO taking into account the 

optimum state of motion of the plane A as 

determined by previous analysis and the 

state of motion mentioned just now. These ex- 

pressions have the following form 

J 
lJ=? - (fg)* To” 

opt = u* TG- (4.30) 

U* - jg TO2 
J= pi7+jg jr&- 

Fig. 4. 

The first of them corresponds to the optimum state. For comparison, 

we calculate the difference between these two displacements 

J opt 
_ J = To2 (v* - lgi3 

16 (u* + jg) u* >O fQr u*>fg 

The results are shown in Fig. 4, which contains the diagrams of velo- 

cities for both states of motion. 

The author expresses his deep gratitude to A.I. Lur’e for his atten- 

tion and interest to this paper, and to G.Iu. Dzhanelidze and I. I. 

Blekhman for their discussions of the results. 

APPENPIX 

In the n + m dimensional space of the coordinates xl, . . . , x,, and the 

controls al, . . . . aa, we shall consider a normal arc C satisfying Equa- 

tions (1.1). (1.2) and the conditions (1.3), (1.4). and corresponding to 

a minimum of the functional J. On this arc, the controls u(t) or the 

right-hand sides of the equations of motion may have a finite number of 

points of discontinuity. Such points will be called the corner points of 

the arc C. 

We assume that, on the arc C, the matrix 

whose k, p element is the derivative $,/a$ is of the rank r, equal to 



Bquatipns rith discontinuous right-hand rider 351 

the number of Equations (1.2). Thus, using the arguments and calculations 

differing from those in the book by, Bliss [ll onls by the necessitJ of 
construction of the functions uk( bl. . . . , bp, t) satisfying Equations 
(1.2). we can prove the following lemma. 

If an admissible arc C satisfies Equations (1.1) and (1.2), and if p 

admissible sets of the constants and functions 

z QLX’ vf’or. rra. E,, P). l 0) (A.1) 

are related by the variational equations on C 

64.2) 

where the derivatives af,/&,,, afs/ay-,,, $~,/a% are taken on C, then 
there exists the 

s,(br, . . ., b,, t) 

uk (h, . . . . $,, t) 

p parametric family ’ 

(s= i, . . ., n), 

(k = 1, . . ., m), 
to (bl, . . ., bJ d t Q T (h, . . ., $1 (A.3) 

containing C for b, = . . . = b, = 0 and consisting of the curves satisfy- 

ing Equations (1.1) and (1.2): This family has the property that for any 

a = 1, . . . . p the quantities (A. 1) are equal to its variations with re- 

spect to b, on C. 

(A-4) 

where the index 0 denotes that the derivatives are calculated for b, = 
= . . . bp = 0. 

Let US assume that we have constructed a p + 
of the curves (A.3). Substituting the functions 
J we have 

q + 1 parametric family 
(A.3) into the functional 

J = J (h, . . ., b,+,+,) (A.51 

The total differential of this function is 

Q 
dJ = fo6t 1; + 2 Ifo- (ti’) - fo+ ($‘)I at,’ + dg + 

I=1 

(A.0 
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where 

at0 = 
P+q+1 

2 
0-l 

%+I+1 

=2 
Or=1 

p+q+1 

.$db,, bT= 2 s%.db, 
a a=~ aba 

P+cl-tl au 
(A.71 

For the curve Cthis differential assumes the form 

where 

Jl (Eat ta, TJ = J,, = to%, 1; + 5 (fo- - f~+)~~+;~ + G,, + 
i-1 

+@ ( 
f, a=1 

(A-8) 

(A.9) 

and Cla is the linear form 

G la = 4 &a (to), . . .s 8, (to), $x. El, (T), . . . . f,, (T), rTal= 

The function J1, is called [I] the first variation of the functional 

J with respect to ba. 

We introduce now into discussion the sum 

L (r* 2’s u* kS p, t, = fo + i A,& - 5 p&\pn, (A.11) 
64 k=l 

where hl( t) and ph( t) are the Lagrange multipliers which should be de- 

termined. We arao note that, if c,J t) and cika(t) satisfy the variational 
equations (A.2), we can write 

(A.12) 

Substituting the functions (A.3) into the left-hand sides of Equations 
(1.3) and (1.4). we obtain the functions gl(b,, . . . . b,+q+l) and 
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6i(bl, ***I bp+q+l) such that the equations 

J @I, . . . . bp+p+l) = J (0, . . ., o) + u, q(h, . . . . $,+,+,)=O (Z-l ,...I p) 

6 h ($‘). . . ., s,, (Q’), t;] = 6, (bl, . . ., bptq+2) = 0 (i = 1, . . ., q) 
(A-13) 

have the solution b, = . . . = bp+ q+ 1 = u = 0 corresponding to the arc C. 

The functional determinant 

where @l and ei denotes the variations of the terminal conditions (1.3) 
and of the Equation (1.4) 

must be equal to zero on C for’ arbitrary variations. In the opposite 
case, Equations (A. 13) have the solutions ba = B,$ II) which become equal 

to zero for u = 0. Consequently, J(u) < J(0) for u < 0, and J(0) is not 
a mininum. 

Therefore, the rani of the matrix of the determinant (A. 14) does not 
exceed p + q, and the system of linear equations 

P 9 

J,, + 2 pp,, + x V& = 0 (a = 1, . . ., P + q + 1) (A.16) 

1-l i=l 

has non-trivial solutions pl and Vi. With these pI and Vi’ the equation 

JI (Et 5. t) + i P,@, (E, 6, r) + 5 V&$ (Es ~1 = 0 (A.17) 
131 (=I 

should be satisfied for arbitrary admissible variations mu, T 8. flc 

gd( t)S <k( t1. 
ti 

Substituting now J,(<, 5, -r) from (A.12) into Equations (A.17) we ob- 

tain the relation 
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which in the Lagrangean notations assumes the form 

T 

x,,(ti'), +') + 
5 3 

Ldt = 0 (-4.19) 

t. 

or 

where 

AZ==0 (A.20) 

z++i vif3[xl(t;)‘..., 

T 

x,, (ti’), ti’] + 
s 
L dt (A.21) 

i=l t. 
P 

cp= g + 2 PI% (A.22) 
I=1 

The condition (A.20) should be satisfied for an arbitrary admissible 
arc C which satisfies Equations (1.1) and (1.2) and the conditions (1.3) 
and (1.4) and which corresponds to the minimum of the functional J. This 
condition may be called the condition of extremum of the functional J. 

It has been used in Section 2, where its expanded form was given. 

The arguments and calculations leading to the necessary condition of 
Weierstrass for a strong minimum of the functional J. in the case of the 
problems with continuous right-hand sides of the equations of motion, 
are described in full details in the Appendix of [s]. They will not be 
repeated here; only the speciai aspects introduced by the discontinuities 
of the right-hand sides will be indicated. 

At an arbitrary point of the arc C, not coinciding with the corners 
of C, the inequality should be satisfied 

where 
E>,O (A. 23) 

E = L (2, k, u, h, p, t) - L (2, ;, u, a, p ,t) - 5 (8, - i *) 2 (A. 24) 
s=i 8 

while Zs, ak correspond to the arc C, and X,, Uk are arbitrary admissible 
functions satisfying Equations (1.1) and (1.2). The function E may have 
discontinuities at the points t = t’, where the right-hand sides of the 
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equations of notion are discontinuous. However. it has the left and right 

limits at these points. Therefore, at the points of discontinuities of the 
right-hand sides of the equations of motion, the inequality (A.23) should 
be satisfied for both, the left and the right limits of the function E. 
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